Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Natural Isotope Abundance in Metabolites: Techniques and Kinetic Isotope Effect Measurement in Plant, Animal, and Human Tissues.

Identifieur interne : 000758 ( Main/Exploration ); précédent : 000757; suivant : 000759

Natural Isotope Abundance in Metabolites: Techniques and Kinetic Isotope Effect Measurement in Plant, Animal, and Human Tissues.

Auteurs : Illa Tea [France] ; Guillaume Tcherkez [Australie]

Source :

RBID : pubmed:28911768

Abstract

The natural isotope abundance in bulk organic matter or tissues is not a sufficient base to investigate physiological properties, biosynthetic mechanisms, and nutrition sources of biological systems. In fact, isotope effects in metabolism lead to a heterogeneous distribution of (2)H, (18)O, (13)C, and (15)N isotopes in metabolites. Therefore, compound-specific isotopic analysis (CSIA) is crucial to biological and medical applications of stable isotopes. Here, we review methods to implement CSIA for (15)N and (13)C from plant, animal, and human samples and discuss technical solutions that have been used for the conversion to CO2 and N2 for IRMS analysis, derivatization and isotope effect measurements. It appears that despite the flexibility of instruments used for CSIA, there is no universal method simply because the chemical nature of metabolites of interest varies considerably. Also, CSIA methods are often limited by isotope effects in sample preparation or the addition of atoms from the derivatizing reagents, and this implies that corrections must be made to calculate a proper δ-value. Therefore, CSIA has an enormous potential for biomedical applications, but its utilization requires precautions for its successful application.

DOI: 10.1016/bs.mie.2017.07.020
PubMed: 28911768


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Natural Isotope Abundance in Metabolites: Techniques and Kinetic Isotope Effect Measurement in Plant, Animal, and Human Tissues.</title>
<author>
<name sortKey="Tea, Illa" sort="Tea, Illa" uniqKey="Tea I" first="Illa" last="Tea">Illa Tea</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research School of Biology, Australian National University, Canberra, ACT, Australia; Cancer Metabolism and Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia; EBSI Team, CEISAM, University of Nantes-CNRS UMR 6230, Nantes, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Research School of Biology, Australian National University, Canberra, ACT, Australia; Cancer Metabolism and Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia; EBSI Team, CEISAM, University of Nantes-CNRS UMR 6230, Nantes</wicri:regionArea>
<placeName>
<region type="region">Pays de la Loire</region>
<region type="old region">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tcherkez, Guillaume" sort="Tcherkez, Guillaume" uniqKey="Tcherkez G" first="Guillaume" last="Tcherkez">Guillaume Tcherkez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Biology, Australian National University, Canberra, ACT, Australia. Electronic address: guillaume.tcherkez@anu.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Biology, Australian National University, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28911768</idno>
<idno type="pmid">28911768</idno>
<idno type="doi">10.1016/bs.mie.2017.07.020</idno>
<idno type="wicri:Area/PubMed/Corpus">001190</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001190</idno>
<idno type="wicri:Area/PubMed/Curation">001184</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001184</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001184</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001184</idno>
<idno type="wicri:Area/Ncbi/Merge">004E60</idno>
<idno type="wicri:Area/Ncbi/Curation">004E60</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">004E60</idno>
<idno type="wicri:Area/Main/Merge">000753</idno>
<idno type="wicri:Area/Main/Curation">000758</idno>
<idno type="wicri:Area/Main/Exploration">000758</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Natural Isotope Abundance in Metabolites: Techniques and Kinetic Isotope Effect Measurement in Plant, Animal, and Human Tissues.</title>
<author>
<name sortKey="Tea, Illa" sort="Tea, Illa" uniqKey="Tea I" first="Illa" last="Tea">Illa Tea</name>
<affiliation wicri:level="3">
<nlm:affiliation>Research School of Biology, Australian National University, Canberra, ACT, Australia; Cancer Metabolism and Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia; EBSI Team, CEISAM, University of Nantes-CNRS UMR 6230, Nantes, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Research School of Biology, Australian National University, Canberra, ACT, Australia; Cancer Metabolism and Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia; EBSI Team, CEISAM, University of Nantes-CNRS UMR 6230, Nantes</wicri:regionArea>
<placeName>
<region type="region">Pays de la Loire</region>
<region type="old region">Pays de la Loire</region>
<settlement type="city">Nantes</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tcherkez, Guillaume" sort="Tcherkez, Guillaume" uniqKey="Tcherkez G" first="Guillaume" last="Tcherkez">Guillaume Tcherkez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research School of Biology, Australian National University, Canberra, ACT, Australia. Electronic address: guillaume.tcherkez@anu.edu.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Research School of Biology, Australian National University, Canberra, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Methods in enzymology</title>
<idno type="eISSN">1557-7988</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The natural isotope abundance in bulk organic matter or tissues is not a sufficient base to investigate physiological properties, biosynthetic mechanisms, and nutrition sources of biological systems. In fact, isotope effects in metabolism lead to a heterogeneous distribution of (2)H, (18)O, (13)C, and (15)N isotopes in metabolites. Therefore, compound-specific isotopic analysis (CSIA) is crucial to biological and medical applications of stable isotopes. Here, we review methods to implement CSIA for (15)N and (13)C from plant, animal, and human samples and discuss technical solutions that have been used for the conversion to CO2 and N2 for IRMS analysis, derivatization and isotope effect measurements. It appears that despite the flexibility of instruments used for CSIA, there is no universal method simply because the chemical nature of metabolites of interest varies considerably. Also, CSIA methods are often limited by isotope effects in sample preparation or the addition of atoms from the derivatizing reagents, and this implies that corrections must be made to calculate a proper δ-value. Therefore, CSIA has an enormous potential for biomedical applications, but its utilization requires precautions for its successful application.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Pays de la Loire</li>
</region>
<settlement>
<li>Nantes</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Pays de la Loire">
<name sortKey="Tea, Illa" sort="Tea, Illa" uniqKey="Tea I" first="Illa" last="Tea">Illa Tea</name>
</region>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Tcherkez, Guillaume" sort="Tcherkez, Guillaume" uniqKey="Tcherkez G" first="Guillaume" last="Tcherkez">Guillaume Tcherkez</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000758 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000758 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28911768
   |texte=   Natural Isotope Abundance in Metabolites: Techniques and Kinetic Isotope Effect Measurement in Plant, Animal, and Human Tissues.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28911768" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AustralieFrV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024